蛋白質[生命的物質基礎]

蛋白質[生命的物質基礎]

蛋白質(protein)是生命的物質基礎,是有機大分子,是構成細胞的基本有機物,是生命活動的主要承擔者。沒有蛋白質就沒有生命。胺基酸是蛋白質的基本組成單位。它是與生命及與各種形式的生命活動緊密聯繫在一起的物質。機體中的每一個細胞和所有重要組成部分都有蛋白質參與。蛋白質占人體重量的16%~20%,即一個60kg重的成年人其體內約有蛋白質9.6~12kg。人體內蛋白質的種類很多,性質、功能各異,但都是由20多種胺基酸(Amino acid)按不同比例組合而成的,並在體內不斷進行代謝與更新。

基本信息

概念

蛋白質蛋白質結構
蛋白質是由胺基酸以“脫水縮合”的方式組成的多肽鏈經過盤曲摺疊形成的具有一定空間結構的物質。
蛋白質中一定含有、氫、氧、氮元素。
蛋白質是由α—胺基酸按一定順序結合形成一條多肽鏈,再由一條或一條以上的多肽鏈按照其特定方式結合而成的高分子化合物。蛋白質就是構成人體組織器官的支架和主要物質,在人體生命活動中,起著重要作用,可以說沒有蛋白質就沒有生命活動的存在。每天的飲食中蛋白質主要存在於瘦肉蛋類、豆類及類中。
男性缺失蛋白質比女性缺失蛋白質更需要重視,男士一旦缺失蛋白質,會導致男性精子質量下降,精子活力降低以及精子不液化造成男性不育。
蛋白質是一種複雜的有機化合物,舊稱“朊(ruǎn)”。
胺基酸是組成蛋白質的基本單位,胺基酸通過脫水縮合連成肽鏈。蛋白質是由一條或多條多肽鏈組成的生物大分子,每一條多肽鏈有二十至數百個胺基酸殘基(-R)不等;各種胺基酸殘基按一定的順序排列。蛋白質的胺基酸序列是由對應基因所編碼。除了遺傳密碼所編碼的20種基本胺基酸,在蛋白質中,某些胺基酸殘基還可以被翻譯後修飾而發生化學結構的變化,從而對蛋白質進行激活或調控。多個蛋白質可以一起,往往是通過結合在一起形成穩定的蛋白質複合物,摺疊或螺鏇構成一定的空間結構,從而發揮某一特定功能。合成多肽的細胞器是細胞質中糙面型內質網上的核糖體

蛋白質的不同在於其胺基酸的種類、數目、排列順序和肽鏈空間結構的不同。
食入的蛋白質在體內經過消化被水解成胺基酸被吸收後,合成人體所需蛋白質,同時新的蛋白質又在不斷代謝與分解,時刻處於動態平衡中。因此,食物蛋白質的質和量、各種胺基酸的比例,關係到人體蛋白質合成的量,尤其是青少年的生長發育、孕產婦的優生優育、老年人的健康長壽,都與膳食中蛋白質的量有著密切的關係。蛋白質又分為完全蛋白質和不完全蛋白質。富含必需胺基酸,品質優良的蛋白質統稱完全蛋白質,如奶、蛋、魚、肉類等屬於完全蛋白質,植物中的大豆亦含有完全蛋白質。缺乏必需胺基酸或者含量很少的蛋白質稱不完全蛋白質,如谷、麥類、玉米所含的蛋白質和動物皮骨中的明膠等。

計算

原子數
蛋白質蛋白質

由m個胺基酸,n條肽鏈組成的蛋白質分子,至少含有n個—COOH,至少含有n個—NH2,肽鍵m-n個,O原子m+n個。

分子質量

設胺基酸的平均相對分子質量為a,蛋白質的相對分子質量=ma-18(m-n)

基因控制

基因中的核苷酸6

信使RNA中的核苷酸3

蛋白質中胺基酸1

生理需要

2000年,中國營養學會重新修訂了推薦的膳食營養素攝入量,新修訂的蛋白質推薦攝入量如下:

中國居民膳食蛋白質的推薦攝入量

年齡(歲) 蛋白質RNI/(g/d) 年齡(歲) 蛋白質RNI/(g/d)
0~ 1.5~3g/(kg·d) 14~ 65 60
0.5~ 1.5~3g/(kg·d) 18~
1~ 35 35 體力活動
2~ 40 40 55 45
3~ 45 45 60 50
4~ 50 50 70 60
5~ 55 55 孕婦
6~ 55 55 早期 +8
7~ 60 60 中期 +18
8~ 65 65 晚期 +23
9~ 65 65 乳母 +23
10~ 70 65 老年 75 69
11~ 75 75 按15%蛋白質/總熱量計算
RNI(推薦攝入量):是指可以滿足某一特定性別、年齡及生理狀況群體中絕大多數個體(97%~98%)的需要量的攝入水平。長期攝入RNI水平,可以滿足機體對該營養素的需要,維持組織中適當的營養素儲備,保持健康。

代謝吸收

蛋白質在胃液消化酶的作用下,初步水解,在小腸中完成整個消化吸收過程。胺基酸的吸收通過小腸黏膜細胞,是由主動運轉系統進行,分別轉運中性、酸性和鹼性胺基酸。在腸內被消化吸收的蛋白質,不僅來自於食物,也有腸黏膜細胞脫落和消化液的分泌等,每天有70g左右蛋白質進入消化系統,其中大部分被消化和重吸收。未被吸收的蛋白質由糞便排出體外。

組成特點

蛋白質結構蛋白質結構
蛋白質是由C(碳)、H(氫)、O(氧)、N(氮)組成,一般蛋白質可能還會含有P(磷)、S(硫)、Fe(鐵)、Zn(鋅)、Cu(銅)、B(硼)、Mn(錳)、I(碘)、Mo(鉬)等。
這些元素在蛋白質中的組成百分比約為:碳50%氫7%氧23%氮16%硫0~3%其他微量。
(1)一切蛋白質都含N元素,且各種蛋白質的含量很接近,平均為16%;
(2)蛋白質係數:任何生物樣品中每1g元N的存在,就表示大約有100/16=6.25g蛋白質的存在,6.25常稱為蛋白質常數。

整體結構

蛋白質是以胺基酸為基本單位構成的生物高分子。蛋白質分子上胺基酸的序列和由此形成的立體結構構成了蛋白質結構的多樣性。蛋白質具有一級、二級、三級、四級結構,蛋白質分子的結構決定了它的功能。
一級結構(primarystructure):胺基酸殘基在蛋白質肽鏈中的排列順序稱為蛋白質的一級結構,每種蛋白質都有唯一而確切的胺基酸序列。
二級結構(secondarystructure):蛋白質分子中肽鏈並非直鏈狀,而是按一定的規律捲曲(如α-螺鏇結構)或摺疊(如β-摺疊結構)形成特定的空間結構,這是蛋白質的二級結構。蛋白質的二級結構主要依靠肽鏈中胺基酸殘基亞氨基(—NH—)上的氫原子和羰基上的氧原子之間形成的氫鍵而實現的。
三級結構(tertiarystructure):在二級結構的基礎上,肽鏈還按照一定的空間結構進一步形成更複雜的三級結構。肌紅蛋白,血紅蛋白等正是通過這種結構使其表面的空穴恰好容納一個血紅素分子。
四級結構(quaternarystructure):具有三級結構的多肽鏈按一定空間排列方式結合在一起形成的聚集體結構稱為蛋白質的四級結構。如血紅蛋白由4個具有三級結構的多肽鏈構成,其中兩個是α-鏈,另兩個是β-鏈,其四級結構近似橢球形狀。

連線方法

用約20種胺基酸作原料,在細胞質中的核糖體上,將胺基酸分子互相連線成肽鏈。一個胺基酸分子的氨基和另一個胺基酸分子的羧基,脫去一分子水而連線起來,這種結合方式叫做脫水縮合。通過縮合反應,在羧基和氨基之間形成的連線兩個胺基酸分子的那個鍵叫做肽鍵。由肽鍵連線形成的化合物稱為肽。

檢測方法

分別向甲乙兩支試管加入3毫升蛋清稀釋液和清水,再依次向兩支試管中加入雙縮脲試劑A液和B液。觀察甲乙兩試管中溶液發生的顏色變化。上述的演示實驗結果表明,雙縮脲試劑與蛋白質呈現紫色反應。

化學性質

兩性

蛋白質是由α-胺基酸通過肽鍵構成的高分子化合物,在蛋白質分子中存在著氨基和羧基,因此跟胺基酸相似,蛋白質也是兩性物質。

水解反應

蛋白質在酸、鹼或酶的作用下發生水解反應,經過多肽,最後得到多種α-胺基酸。

蛋白質水解時,應找準結構中鍵的“斷裂點”,水解時肽鍵部分或全部斷裂。

膠體性質

有些蛋白質能夠溶解在水裡(例如雞蛋白能溶解在水裡)形成溶液。

蛋白質的分子直徑達到了膠體微粒的大小(10-9~10-7m)時,所以蛋白質具有膠體的性質。

沉澱

原因:加入高濃度的中性鹽、加入有機溶劑、加入重金屬、加入生物鹼或酸類、熱變性

少量的鹽(如硫酸銨、硫酸鈉等)能促進蛋白質的溶解。如果向蛋白質水溶液中加入濃的無機鹽溶液,可使蛋白質的溶解度降低,而從溶液中析出,這種作用叫做鹽析.

這樣鹽析出的蛋白質仍舊可以溶解在水中,而不影響原來蛋白質的性質,因此鹽析是個可逆過程.利用這個性質,採用分段鹽析方法可以分離提純蛋白質.

變性

在熱、酸、鹼、重金屬鹽、紫外線等作作用下,蛋白質會發生性質上的改變而凝結起來.這種凝結是不可逆的,不能再使它們恢復成原來的蛋白質.蛋白質的這種變化叫做變性.蛋白質變性之後,紫外吸收,化學活性以及粘度都會上升,變得容易水解,但溶解度會下降。

蛋白質變性後,就失去了原有的可溶性,也就失去了它們生理上的作用.因此蛋白質的變性凝固是個不可逆過程.

造成蛋白質變性的原因

物理因素包括:加熱、加壓、攪拌、振盪、紫外線照射、X射線、超音波等:

化學因素包括:強酸強鹼、重金屬鹽、三氯乙酸、乙醇丙酮等。

顏色反應

蛋白質可以跟許多試劑發生顏色反應。

例如在雞蛋白溶液中滴入濃硝酸,則雞蛋白溶液呈黃色.這是由於蛋白質(含苯環結構)與濃硝酸發生了顏色反應的緣故。還可以用雙縮脲試劑對其進行檢驗,該試劑遇蛋白質生成紫色絡合物

氣味反應

蛋白質在灼燒分解時,可以產生一種燒焦羽毛的特殊氣味。利用這一性質可以鑑別蛋白質。

摺疊

對蛋白質摺疊機理的研究,對保留蛋白質活性,維持蛋白質穩定性和包涵體蛋白質摺疊復性都具有重要的意義(21)。早在上世紀30年代,我國生化界先驅吳憲教授就對蛋白質的變性作用進行了闡釋(8),30年後,Anfinsen通過對核糖核酸酶A的經典研究表明去摺疊的蛋白質在體外可以自發的進行再摺疊,僅僅是序列本身已經包括了蛋白質正確摺疊的所有信息(9,10),並提出蛋白質摺疊的熱力學假說,為此Anfinsen獲得1972年諾貝爾化學獎。這一理論有兩個關鍵點:1蛋白質的狀態處於去摺疊和天然構象的平衡中;2 天然構象的蛋白質處於熱力學最低的能量狀態。儘管蛋白質的胺基酸序列在蛋白質的正確摺疊中起著核心的作用,各種各樣的因素,包括信號序列,輔助因子,分子伴侶,環境條件,均會影響蛋白質的摺疊,新生蛋白質摺疊並組裝成有功能的蛋白質,並非都是自發的,在多數情況下是需要其它蛋白質的幫助,已經鑑定了許多參與蛋白質摺疊的摺疊酶和分子伴侶(3,16,86),蛋白質“自發摺疊”的經典概念發生了轉變和更新,但這並不與摺疊的熱力學假說相矛盾,而是在動力學上完善了熱力學觀點。在蛋白質的摺疊過程中,有許多作用力參與,包括一些構象的空間阻礙,范德華力,氫鍵的相互作用,疏水效應,離子相互作用,多肽和周圍溶劑相互作用產生的熵驅動的摺疊(12,52),但對於蛋白質獲得天然結構這一複雜過程的特異性,我們還知之甚少,許多實驗和理論的工作都在加深我們對摺疊的認識,但是問題仍然沒有解決。

在摺疊的機制研究上早期的理論認為,摺疊是從變性狀態通過中間狀態到天然狀態的一個逐步的過程,並對摺疊中間體進行了深入研究,認為摺疊是在熱力學驅動下按單一的途徑進行的。後來的研究表明摺疊過程存在實驗可測的多種中間體,摺疊通過有限的路徑進行。新的理論強調在摺疊的初始階段存在多樣性,蛋白質通過許多的途徑進入摺疊漏斗(folding funnel),從而摺疊在整體上被描述成一個漏斗樣的圖像,摺疊的動力學過程被認為是部分摺疊的蛋白質整體上的進行性裝配,並且伴隨有自由能和熵的變化,蛋白質最終尋找到自己的正確的摺疊結構,這一理論稱為能量圖景(energy landscape),如圖3所示,漏斗下方的凹凸反映蛋白質構象瞬間進入局部自由能最小區域(13,14)。

能量圖景(The energy landscape)的示意圖,高度代表能量尺度,寬度代表構象尺度,在漏斗(funnel)的下方存在別的低能量狀態,共存的不同能量狀態的蛋白質種類也降到最小(14)。

這一理論認為結構同源的蛋白質可以通過不同的摺疊途徑形成相似的天然構象,人酸性成纖維生長因子(hFGF-1)和蠑螈酸性成纖維生長因子(nFGF-1)胺基酸序列具有約80%同源性,並且具有結構同源性(12個β摺疊反向平行排列形成β摺疊桶),在鹽酸胍誘導去摺疊的過程中,hFGF-1可以監測到具有熔球體樣的摺疊中間體,而nFGF-1經由兩態(天然狀態到變性狀態)去摺疊,沒有檢測到中間體的存在,摺疊的動力學研究也表明兩種蛋白採用不同的摺疊機制(38)。對於同一蛋白質,採用的滲透壓調節劑(osmolytes)不同,蛋白質摺疊的途徑也不相同,說明不同的滲透壓調節劑對蛋白質的穩定效應不同(11)。這兩個例子都說明摺疊機制的複雜性,也與上面所介紹的理論相吻合。

生理功能

蛋白質蛋白質

1.構造人的身體:蛋白質是一切生命的物質基礎,是機體細胞的重要組成部分,是人體組織更新和修補的主要原料。人體的每個組織:毛髮、皮膚、肌肉、骨骼、內臟、大腦、血液、神經、內分泌等都是由蛋白質組成,所以說飲食造就人本身。蛋白質對人的生長發育非常重要。

比如大腦發育的特點是一次性完成細胞增殖,人的大腦細胞的增長有二個高峰期。第一個是胎兒三個月的時候;第二個是出生後到一歲,特別是0---6個月的嬰兒是大腦細胞猛烈增長的時期。到一歲大腦細胞增殖基本完成,其數量已達成人的9/10。所以0到1歲兒童對蛋白質的攝入要求很有特色,對兒童的智力發展尤關重要。

2.結構物質:人的身體由百兆億個細胞組成,細胞可以說是生命的最小單位,它們處於永不停息的衰老、死亡、新生的新陳代謝過程中。例如年輕人的表皮28天更新一次,而胃黏膜兩三天就要全部更新。所以一個人如果蛋白質的攝入、吸收、利用都很好,那么皮膚就是光澤而又有彈性的。反之,人則經常處於亞健康狀態。組織受損後,包括外傷,不能得到及時和高質量的修補,便會加速肌體衰退。

3.載體的運輸:維持肌體正常的新陳代謝和各類物質在體內的輸送。載體蛋白對維持人體的正常生命活動是至關重要的。可以在體內運載各種物質。比如血紅蛋白—輸送氧(紅血球更新速率250萬/秒)、脂蛋白——輸送脂肪、細胞膜上的受體還有轉運蛋白等。

4.維持機體內的滲透壓的平衡及體液平衡:白蛋白。

5.維持體液的酸鹼平衡。

6.抗體的免疫:有白細胞淋巴細胞、巨噬細胞、抗體(免疫球蛋白)、補體、干擾素等。七天更新一次。當蛋白質充足時,這個部隊就很強,在需要時,數小時內可以增加100倍。

7.酶的催化:構成人體必需的催化和調節功能的各種酶。我們身體有數千種酶,每一種只能參與一種生化反應。人體細胞里每分鐘要進行一百多次生化反應。酶有促進食物的消化、吸收、利用的作用。相應的酶充足,反應就會順利、快捷的進行,我們就會精力充沛,不易生病。否則,反應就變慢或者被阻斷。

8.激素的調節:具有調節體內各器官的生理活性。胰島素是由51個胺基酸分子合成。生長激素是由191個胺基酸分子合成(與生長素無關)。

9.構成神經遞質乙醯膽鹼、五羥色氨等。維持神經系統的正常功能:味覺、視覺和記憶。

10.膠原蛋白:占身體蛋白質的1/3,生成結締組織,構成身體骨架。如骨骼、血管、韌帶等,決定了皮膚的彈性,保護大腦(在大腦腦細胞中,很大一部分是膠原細胞,並且形成血腦屏障保護大腦)

11.能源物質:提供生命活動的能量。

分類

食物蛋白質的營養價值取決於所含胺基酸的種類和數量,所以在營養上尚可根據食物蛋白質的胺基酸組成,分為完全蛋白質、半完全蛋白質和不完全蛋白質三類。

完全蛋白所含必需胺基酸種類齊全、數量充足、比例適當,不但能維持成人的健康,並能促進兒童生長發育,如乳類中的酪蛋白、乳白蛋白,蛋類中的卵白蛋白、卵磷蛋白,肉類中的白蛋白、肌蛋白,大豆中的大豆蛋白,小麥中的麥谷蛋白,玉米中的谷蛋白等。

半完全蛋白所含必需胺基酸種類齊全,但有的胺基酸數量不足,比例不適當,可以維持生命,但不能促進生長發育,如小麥中的麥膠蛋白等。

不完全蛋白質所含必需胺基酸種類不全,既不能維持生命,也不能促進生長發育,如玉米中的玉米膠蛋白,動物結締組織和肉皮中的膠質蛋白,豌豆中的豆球蛋白等。

需求分類

必需胺基酸

食物中的蛋白質必須經過腸胃道消化,分解成胺基酸才能被人體吸收利用,人體對蛋白質的需要實際就是對胺基酸的需要。吸收後的胺基酸只有在數量和種類上都能滿足人體需要身體才能利用它們合成自身的蛋白質。營養學上將胺基酸分為必需胺基酸和非必需胺基酸兩類。

必需胺基酸指的是人體自身不能合成或合成速度不能滿足人體需要,必須從食物中攝取的胺基酸。對成人來說,這類胺基酸有8種,包括賴氨酸、蛋氨酸、亮氨酸、異亮氨酸、蘇氨酸、纈氨酸、色氨酸、苯丙氨酸。對嬰兒來說,有9種,多一種組氨酸。

非必需胺基酸

非必需胺基酸並不是說人體不需要這些胺基酸,而是說人體可以自身合成或由其它胺基酸轉化而得到,不一定非從食物直接攝取不可。這類胺基酸包括甘氨酸、丙氨酸、絲氨酸、天冬氨酸、谷氨酸(及其胺)、脯氨酸、精氨酸、組氨酸、酪氨酸、胱氨酸。

有些非必需胺基酸如胱氨酸和酪氨酸如果供給充裕還可以節省必需胺基酸中蛋氨酸和苯丙氨酸的需要量。

外形分類

根據蛋白質分子的外形,可以將其分作3類:

1.球狀蛋白質分子形狀接近球形,水溶性較好,種類很多,可行使多種多樣的生物學功能。

2.纖維狀蛋白質分子外形呈棒狀或纖維狀,大多數不溶於水,是生物體重要的結構成分,或對生物體起保護作用。

3.膜蛋白質一般摺疊成近球形,插入生物膜,也有一些通過非共價鍵或共價鍵結合在生物膜的表面。生物膜的多數功能是通過膜蛋白實現的。

結構種類

纖維蛋白(fibrous protein):一類主要的不溶於水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,並為單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。

球蛋白(globular protein):緊湊的,近似球形的,含有摺疊緊密的多肽鏈的一類蛋白質,許多都溶於水。典形的球蛋白含有能特異的識別其它化合物的凹陷或裂隙部位。

角蛋白(keratin):由處於α-螺鏇或β-摺疊構象的平行的多肽鏈組成不溶於水的起著保護或結構作用蛋白質。

膠原(蛋白)(collagen):是動物結締組織最豐富的一種蛋白質,它是由原膠原蛋白分子組成。原膠原蛋白是一種具有右手超螺鏇結構的蛋白。每個原膠原分子都是由3條特殊的左手螺鏇(螺距0.95nm,每一圈含有3.3個殘基)的多肽鏈右手鏇轉形成的。

伴娘蛋白(chaperone):與一種新合成的多肽鏈形成複合物並協助它正確摺疊成具有生物功能構向的蛋白質。伴娘蛋白可以防止不正確摺疊中間體的形成和沒有組裝的蛋白亞基的不正確聚集,協助多肽鏈跨膜轉運以及大的多亞基蛋白質的組裝和解體。

肌紅蛋白(myoglobin):是由一條肽鏈和一個血紅素輔基組成的結合蛋白,是肌肉內儲存氧的蛋白質,它的氧飽和曲線為雙曲線型。

血紅蛋白(hemoglobin):是由含有血紅素輔基的4個亞基組成的結合蛋白。血紅蛋白負責將氧由肺運輸到外周組織,它的氧飽和曲線為S型。

蛋白質變性(denaturation):生物大分子的天然構象遭到破壞導致其生物活性喪失的現象。蛋白質在受到光照,熱,有機溶劑以及一些變性劑的作用時,次級鍵受到破壞,導致天然構象的破壞,使蛋白質的生物活性喪失。

復性(renaturation):在一定的條件下,變性的生物大分子恢復成具有生物活性的天然構象的現象。

別構效應(allosteric effect):又稱為變構效應,是寡聚蛋白與配基結合改變蛋白質的構象,導致蛋白質生物活性改變的現象。

主要來源

蛋白質的主要來源是肉、蛋、奶、和豆類食品,一般而言,來自於動物的蛋白質有較高的品質,含有充足的必需胺基酸。

必需胺基酸約有8種,無法由人體自行合成,必須由食物中攝取,若是體內有一種必需胺基酸存量不足,就無法合成充分的蛋白質供給身體各組織使用,其他過剩的蛋白質也會被身體代謝而浪費掉,所以確保足夠的必需胺基酸攝取是很重要的。

植物性蛋白質通常會有1-2種必需胺基酸含量不足,所以素食者需要攝取多樣化的食物,從各種組合中獲得足夠的必需胺基酸。一塊像撲克牌大小的煮熟的肉約含有30-35公克的蛋白質,一大杯牛奶約有8-10公克,半杯的各式豆類約含有6-8公克。所以一天吃一塊像撲克牌大小的肉,喝兩大杯牛奶,一些豆子,加上少量來自於蔬菜水果和飯,就可得到大約60-70公克的蛋白質,足夠一個體重60公斤的長跑選手所需。若是你的需求量比較大,可以多喝一杯牛奶,或是酌量多吃些肉類,就可獲得充分的蛋白質。

食物含量

蛋白質蛋白質

含蛋白質多的食物包括:

牲畜的奶,如牛奶、羊奶、馬奶等;畜肉,如牛、羊、豬肉等;禽肉,如雞、鴨、鵝、鵪鶉、鴕鳥等;蛋類,如雞蛋、鴨蛋、鵪鶉蛋等及魚、蝦、蟹等;還有大豆類,包括黃豆、大青豆和黑豆等,其中以黃豆的營養價值最高,它是嬰幼兒食品中優質的蛋白質來源;此外像芝麻、瓜子、核桃、杏仁、松子等乾果類的蛋白質的含量均較高。由於各種食物中胺基酸的含量、所含胺基酸的種類各異,且其他營養素(脂肪、糖、礦物質、維生素等)含量也不相同,因此,給嬰兒添加輔食時,以上食品都是可供選擇的,還可以根據當地的特產,因地制宜地為小兒提供蛋白質高的食物。

蛋白質蛋白質

蛋白質食品價格均較昂貴,家長可以利用幾種廉價的食物混合在一起,提高蛋白質在身體裡的利用率,例如,單純食用玉米的生物價值為60%、小麥為67%、黃豆為64%,若把這三種食物,按比例混合後食用,則蛋白質的利用率可達77%。

生物體內普遍存在的一種主要由胺基酸組成的生物大分子。它與核酸 同為生物體最基本的物質,擔負著生命活動過程的各種極其重要的功能。蛋白質的基本結構單元是胺基酸,在蛋白質中出現的胺基酸共有20種。胺基酸以肽鍵相互連線,形成肽鏈。

1820年H.布拉孔諾發現甘氨酸和亮氨酸,這是最初被鑑定為蛋白質成分的胺基酸,以後又陸續發現了其他的胺基酸。到19世紀末已經搞清蛋白質主要是由一類相當簡單的有機分子——胺基酸所組成。1902年E.菲舍爾和F.霍夫邁斯特各自獨立地闡明了在蛋白質分子中將胺基酸連線在一起的化學鍵是肽鍵;1907年E.菲舍爾又成功地用化學方法連線了18個胺基酸首次合成了多肽,從而建立了作為蛋白質化學結構基礎的多肽理論。對蛋白質精確的三維結構知識主要來自對蛋白質晶體的X射線衍射分析,1960 年J.C.肯德魯首次套用X射線衍射分析技術測定了肌紅蛋白的晶體結構,這是第一個被闡明了三維結構的蛋白質。中國科學工作者在1965年用化學合成法全合成了結晶牛胰島素,首次實現了蛋白質的人工合成;在1969~1973年期間,先後在2.5埃和1.8埃解析度水平測定了豬胰島素的晶體結構,這是中國闡明的第一個蛋白質的三維結構。

分子活性

蛋白質分子在受到外界的一些物理和化學因素的影響後,分子的肽鏈雖不裂解,但其天然的立體結構遭致改變和破壞,從而導致蛋白質生物活性的喪失和其他的物理、化學性質的變化,這一現象稱為蛋白質的變性。早在1931年中國生物化學家吳憲就首次提出了正確的變性作用理論。引起蛋白質變性的主要因素有:①溫度。②酸鹼度。③有機溶劑。④脲和鹽酸胍。這是套用最廣泛的蛋白質變性試劑。⑤去垢劑和芳香環化合物。

蛋白質的變性常伴隨有下列現象:①生物活性的喪失。這是蛋白質變性的最主要特徵。②化學性質的改變。③物理性質的改變。在變性因素去除以後,變性的蛋白質分子又可重新回復到變性前的天然的構象,這一現象稱為蛋白質的復性。蛋白質的復性有完全復性、基本復性或部分復性。只有少數蛋白質在嚴重變性以後,能夠完全復性。蛋白質變性和復性的研究,對了解體內體外的蛋白質分子的摺疊過程十分重要。主要通過蛋白質的變性和復性的研究,肯定了蛋白質摺疊的自發性,證實了蛋白質分子的特徵三維結構僅僅決定於它的胺基酸序列。活性蛋白質分子在生物體內剛合成時,常常不呈現活性,即不具有這一蛋白質的特定的生物功能。要使蛋白質呈現其生物活性,一個非常普遍的現象是,蛋白質分子的肽鏈在一些生化過程中必須按特定的方式斷裂。蛋白質的激活是生物的一種調控方式,這類現象在各種重要的生命活動中廣泛存在。

很多蛋白質由亞基組成,這類蛋白質在完成其生物功能時,在效率和反應速度的調節方面,很大程度上依賴於亞基之間的相互關係。亞基參與蛋白質功能的調節是一個相當普遍的現象,特別在調節酶的催化功能方面。有些酶存在和活性部位不重疊的別構部位,別構部位和別構配體相結合後,引起酶分子立體結構的變化,從而導致活性部位立體結構的改變,這種改變可能增進,也可能鈍化酶的催化能力。這樣的酶稱為別構酶。已知的別構酶在結構上都有兩個或兩個以上的亞基。

主要作用

蛋白質占人體的20 %,占身體比例最大。膽汁,尿液除外,都是蛋白質合成的。只有蛋白質充足,才能代謝正常。就像蓋房子,構建身體的原材料最主要的是蛋白質。

1.蛋白質是構建新組織的基礎材料,是酶,激素合成的原料,;維持鉀鈉平衡;消除水腫。

2.是合成抗體的成分:白細胞,T淋巴細胞,干擾素等,提高免疫力。

3.提供一部分能量。

4.調低血壓,緩衝貧血,是紅細胞的載體。

5.形成人體的膠原蛋白。眼球玻璃體,視紫質都有膠原蛋白。

7.大腦細胞分裂的動力源是蛋白質;腦脊液是蛋白質合成的;記憶力下降

8.性功能障礙

9.肝臟:造血功能;合成激素,酶;解毒。缺乏蛋白質,肝細胞不健康。有一副好肝臟,人健康就有保障。

10.心臟---泵器官。缺乏蛋白質會出現手腳冰涼;缺氧;心肌缺氧造成心力衰竭----死亡。

11.脾胃:每天都要消化食物,消化酶是蛋白質合成的。缺乏會造成胃動力不夠,消化不良,打嗝。胃潰瘍,胃炎;胃酸過多,刺激潰瘍面你會感覺到疼,蛋白質唯一具有修復再造細胞的功能。消化壁上有韌帶,缺乏蛋白質會鬆弛,內臟下垂,子宮下垂臟器移位。

12.四肢:人老先老腿,缺乏蛋白質肌肉萎縮;骨頭的韌性減低,易骨折

13.抗體會減少,易感冒,發燒。

主要研究

研究歷史

在18世紀,安東尼奧·弗朗索瓦(Antoine Fourcroy)和其他一些研究者發現蛋白質是一類獨特的生物分子,他們發現用酸處理一些分子能夠使其凝結或絮凝。當時他們注意到的例子有來自蛋清、血液、血清白蛋白、纖維素和小麥麵筋里的蛋白質。荷蘭化學家格利特·馬爾德(Gerhardus Johannes Mulder)對一般的蛋白質進行元素分析發現幾乎所有的蛋白質都有相同的實驗公式。用“蛋白質”這一名詞來描述這類分子是由Mulder的合作者永斯·貝采利烏斯於1838年提出。Mulder隨後鑑定出蛋白質的降解產物,並發現其中含有為胺基酸的亮氨酸,並且得到它(非常接近正確值)的分子量為131Da。

對於早期的生物化學家來說,研究蛋白質的困難在於難以純化大量的蛋白質以用於研究。因此,早期的研究工作集中於能夠容易地純化的蛋白質,如血液、蛋清、各種毒素中的蛋白質以及消化性和代謝酶(獲取自屠宰場)。1950年代後期,Armour Hot Dog Co.公司純化了一公斤純的牛胰腺中的核糖核酸酶A,並免費提供給全世界科學家使用。科學家可以從生物公司購買越來越多的各類純蛋白質。

著名化學家萊納斯·鮑林成功地預測了基於氫鍵的規則蛋白質二級結構,而這一構想最早是由威廉·阿斯特伯里於1933年提出。隨後,Walter Kauzman在總結自己對變性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基礎上,提出了蛋白質摺疊是由疏水相互作用所介導的。1949年,弗雷德里克·桑格首次正確地測定了胰島素的胺基酸序列,並驗證了蛋白質是由胺基酸所形成的線性(不具有分叉或其他形式)多聚體。原子解析度的蛋白質結構首先在1960年代通過X射線晶體學獲得解析;到了1980年代,NMR也被套用於蛋白質結構的解析,冷凍電子顯微學被廣泛用於對於超大分子複合體的結構進行解析。截至到2008年2月,蛋白質資料庫中已存有接近50,000個原子解析度的蛋白質及其相關複合物的三維結構的坐標。

研究方法

蛋白質是被研究得最多的一類生物分子,對它們的研究包括“體內”(in vivo)和“體外”(in vitro)。體外研究多套用於純化後的蛋白質,將它們置於可控制的環境中,以期獲得它們的功能信息;例如,酶動力學相關的研究可以揭示酶催化反應的化學機制和與不同底物分子之間的相對親和力。而體內研究實驗著重於蛋白質在細胞或者整個組織中的活性作用,從而可以了解蛋白質發揮功能的場所和相應的調節機制。

美國研究人員發現一種名為SIRT1的蛋白質。它不僅可以延長老鼠壽命,還能推遲和健康有關的發病年齡。另外,它還改善老鼠的總體健康,降低膽固醇水平,甚至預防糖尿病。研究人員表示,雖然這項研究是在老鼠身上進行的,但它有朝一日最終會套用到人類身上。

由美國國家衛生研究院國家衰老研究所的拉斐爾-德卡布博士率領的科研組檢測了激活SIRT1的小分子SIRT1720對老鼠健康和壽命產生的影響。德卡布表示:“我們首次驗證了人造SIRT1活化劑不僅延長以標準食物為食的老鼠的壽命,還改善它們的健康跨度。這說明我們可能研發出減輕和年齡有關的新陳代謝疾病以及慢性疾負擔的分子。”這些研究人員還發現,SRT1720使老鼠的平均壽命延長8.8%。

SRT1720補充劑還降低體重和體脂百分比,改善老鼠一生的肌肉功能和運動協調能力。

科學家發現,SRT1720補充劑降低總膽固醇和有助於抵抗心臟病的低密度脂蛋白膽固醇的水平,改善可能幫助預防糖尿病的胰島素敏感性。

SIRT1和它的姊妹蛋白質SIRT2在大量物種的新陳代謝中扮演著重要角色為科學家所知。它們還和DNA修復以及基因調節有關,可能幫助預防糖尿病、心臟病和癌症。老鼠在6個月大和其他生命階段被提供這種補充劑和標準飲食。但專家警告,這項研究還處在一個非常早期的階段,還沒有對人進行相關試驗。

抗癌作用

當癌細胞快速增生時,需要一種名為survivin的蛋白質的幫助。這種蛋白質由凋亡抑制基因Survivin編碼合成在癌細胞中含量很豐富,但在正常細胞中卻幾乎不存在。癌細胞與survivin蛋白的這種依賴性使得survivin自然成為製造新抗癌藥物的靶標,但是在怎樣對付survivin蛋白這個問題上卻仍有一些未解之謎。

Survivin蛋白屬於一類防止細胞自我破壞(即凋亡)的蛋白質。這類蛋白質主要通過抑制凋亡酶(caspases)的作用來阻礙其把細胞送上自殺的道路。以前一直沒有科學家觀察到survivin蛋白與凋亡酶之間的相互作用。也有其它跡象表明survivin蛋白扮演著另一個不同的角色——在細胞分裂後幫助把細胞拉開。

生物化學家GuySalvesen掌握了survivin蛋白的結構“並沒有澄清它是怎樣防止細胞自殺的疑點”。這些蛋白質配對的事實確實讓人驚奇,幾乎很難找到不重要的二聚作用區域。兩個蛋白質的接觸面將是抗癌症藥物集中對付的良好靶標。

組學

在1996年前提到蛋白質組學(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人還抱有懷疑態度。但是,2001年的Science雜誌已把蛋白質組學列為六大研究熱點之一,其“熱度”僅次於幹細胞研究,名列第二。蛋白質組學的受關注程度如今已令人刮目相看。

1.蛋白質組學研究的研究意義和背景

隨著人類基因組計畫的實施和推進,生命科學研究已進入了後基因組時代。在這個時代,生命科學的主要研究對象是功能基因組學,包括結構基因組研究和蛋白質組研究等。儘管已有多個物種的基因組被測序,但在這些基因組中通常有一半以上基因的功能是未知的。功能基因組中所採用的策略,如基因晶片、基因表達序列分析(Serial analysis of gene expression, SAGE)等,都是從細胞中mRNA的角度來考慮的,其前提是細胞中mRNA的水平反映了蛋白質表達的水平。但事實並不完全如此,從DNA mRNA 蛋白質,存在三個層次的調控,即轉錄水平調控(Transcriptional control ),翻譯水平調控(Translational control),翻譯後水平調控(Post-translational control )。從mRNA角度考慮,實際上僅包括了轉錄水平調控,並不能全面代表蛋白質表達水平。實驗也證明,組織中mRNA豐度與蛋白質豐度的相關性並不好,尤其對於低豐度蛋白質來說,相關性更差。更重要的是,蛋白質複雜的翻譯後修飾、蛋白質的亞細胞定位或遷移、蛋白質-蛋白質相互作用等則幾乎無法從mRNA水平來判斷。毋庸置疑,蛋白質是生理功能的執行者,是生命現象的直接體現者,對蛋白質結構和功能的研究將直接闡明生命在生理或病理條件下的變化機制。蛋白質本身的存在形式和活動規律,如翻譯後修飾、蛋白質間相互作用以及蛋白質構象等問題,仍依賴於直接對蛋白質的研究來解決。雖然蛋白質的可變性和多樣性等特殊性質導致了蛋白質研究技術遠遠比核酸技術要複雜和困難得多,但正是這些特性參與和影響著整個生命過程。

2.蛋白質組學研究的策略和範圍

蛋白質組學一經出現,就有兩種研究策略。一種可稱為“竭澤法”,即採用高通量的蛋白質組研究技術分析生物體內儘可能多乃至接近所有的蛋白質,這種觀點從大規模、系統性的角度來看待蛋白質組學,也更符合蛋白質組學的本質。但是,由於蛋白質表達隨空間和時間不斷變化,要分析生物體內所有的蛋白質是一個難以實現的目標。另一種策略可稱為“功能法”,即研究不同時期細胞蛋白質組成的變化,如蛋白質在不同環境下的差異表達,以發現有差異的蛋白質種類為主要目標。這種觀點更傾向於把蛋白質組學作為研究生命現象的手段和方法。

早期蛋白質組學的研究範圍主要是指蛋白質的表達模式(Expression profile),隨著學科的發展,蛋白質組學的研究範圍也在不斷完善和擴充。蛋白質翻譯後修飾研究已成為蛋白質組研究中的重要部分和巨大挑戰。蛋白質-蛋白質相互作用的研究也已被納入蛋白質組學的研究範疇。而蛋白質高級結構的解析即傳統的結構生物學,雖也有人試圖將其納入蛋白質組學研究範圍,但仍獨樹一幟。

3.蛋白質組學研究技術

可以說,蛋白質組學的發展既是技術所推動的也是受技術限制的。蛋白質組學研究成功與否,很大程度上取決於其技術方法水平的高低。蛋白質研究技術遠比基因技術複雜和困難。不僅胺基酸殘基種類遠多於核苷酸殘基(20/ 4), 而且蛋白質有著複雜的翻譯後修飾,如磷酸化和糖基化等,給分離和分析蛋白質帶來很多困難。此外,通過表達載體進行蛋白質的體外擴增和純化也並非易事,從而難以製備大量的蛋白質。蛋白質組學的興起對技術有了新的需求和挑戰。蛋白質組的研究實質上是在細胞水平上對蛋白質進行大規模的平行分離和分析,往往要同時處理成千上萬種蛋白質。因此,發展高通量、高靈敏度、高準確性的研究技術平台是相當一段時間內蛋白質組學研究中的主要任務。在國際蛋白質組研究技術平台的技術基礎和發展趨勢有以下幾個方面:

3.2 蛋白質組研究中的樣品分離和分析

利用蛋白質的等電點和分子量通過雙向凝膠電泳的方法將各種蛋白質區分開來是一種很有效的手段。它在蛋白質組分離技術中起到了關鍵作用。如何提高雙向凝膠電泳的分離容量、靈敏度和解析度以及對蛋白質差異表達的準確檢測是雙向凝膠電泳技術發展的關鍵問題。國外的主要趨勢有第一維電泳採用窄pH梯度膠分離以及開發與雙向凝膠泳相結合的高靈敏度蛋白質染色技術,如新型的螢光染色技術。

質譜技術是目前蛋白質組研究中發展最快,也最具活力和潛力的技術。它通過測定蛋白質的質量來判別蛋白質的種類。當前蛋白質組研究的核心技術就是雙向凝膠電泳-質譜技術,即通過雙向凝膠電泳將蛋白質分離,然後利用質譜對蛋白質逐一進行鑑定。對於蛋白質鑑定而言,高通量、高靈敏度和高精度是三個關鍵指標。一般的質譜技術難以將三者合一,而發展的質譜技術可以同時達到以上三個要求,從而實現對蛋白質準確和大規模的鑑定。

蛋白質的含氮量比較恆定,平均約為16%。

與身高

第二次世界大戰期間,日本動物性食品供應不足,每人每年只平均供應2千克肉,12.5千克奶和奶製品,2.5千克蛋。當時12歲學生平均身高只有137.8厘米。戰後,日本經濟發展迅速,人民生活改善,動物性食品增多,每人每年食用肉達13千克,奶及奶製品25千克,蛋類15千克。1970年調查,12歲少年(少年食品)的身高已達147.1厘米,平均增高9.3厘米。從這個例子可以看出蛋白質(蛋白質食品)食物對少年兒童(兒童食品)增高所起的作用。

蛋白質是構成一切生命的主要化合物,是生命的物質基礎和第一要素,在營養素中占首要地位。少年兒童及嬰幼兒增高離不開蛋白質。人體的骨骼等組織是由蛋白質組成的。在體內新陳代謝的全部化學反應過程中,離不開酶的催化作用,而所有的酶均由蛋白質構成。對青少年增高起作用的各種激素,也都是蛋白質及其衍生物。此外,參與骨細胞分化、的形成、骨的再建和更新等過程的骨礦化結合素、骨鈣素、鹼性磷酸酶、人骨特異生長因子等物質,也均為蛋白質所構成。所以,蛋白質是人體生長發育中最重要的化合物 ,是增高的重要原料。

嬰幼兒(嬰幼兒食品)、少年兒童生長發育所必需的脂溶性維生素(維生素食品)、鐵(鐵食品)、鈣、磷等無機鹽及部分微量元素(微量元素食品),在蛋白質食物中也同時可以獲得。所以,有些兒童少年只喜歡吃素食(素食食品),怕吃雞、魚、肉、蛋等葷菜,或是在家長的催督下才勉強吃一點,這種做法是不可取的,必然會導致因蛋白質缺乏而影響身高。

正確的膳食原則是食物要多樣,粗細要搭配,堅持以糧、豆、菜為主,適當增加肉、魚、蛋、奶的量,以補充身體發育的充足營養,保證身高增加的原料,促進個子長高。

相關詞條

相關搜尋